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THE BOUNDARY LAYERS IN FLUIDS
WITH LITTLE FRICTION*

By H. Blasius
INTRODUCTION

1. The vortices forming in flowlng water behind solid bodies are
not represented correctly by the solution of the potential theory nor
by Helmholtz'!s Jets. Potential theory is unable to satisfy the condi-
tion that the water adheres at the wetted bodles, and its solutions of
the fundamental hydrodynamic equatlons are at variance with the obser—
vation that the flow separates fram the body at & certaln point and
gsends forth a highly turbulent boundary layer into the free flow.
Helmholtz's theory attempts to Imitate the latter effect in such a way
that it Joins two potential flows, Jet and still water, nonanalytical
alone a stream curve. The admissibility of this method 1s based on
the fact that, at zero pressure, which is to prevaill at the cilted
stream curve, the connection of the fluid, and with it the effect of
adjacent parts on each other, is canceled. In reality, however, the
pressure at these boundaries l1s definitely not zero, but can even be
veried arbiltrarily. Besides, Helmholtz's theory with its potential
flows does not satisfy the condition of adherence nor explain the
origin of the vortices, for in all of these problems, the frictlon
must be taken into account on principle, according to the vortex
theorem.

When a cylinder is dipped into flowing water, for example, the
flow corresponds, qualitatively, to the kmown potential, but as the
water adheres to the cylinder, a boundary layer forms on the cylinder
wall in which the velocity rises fram zero at the wall to the value
given by the potential flow. In this boundary layer, the friction
plays an essential part because of the marked veloclity difference;
on 1t also depends the extent of the velocity—decreasing wall effect,
which must be conveyed by shearing forces into the fluid, that is, the

*'Grenzschichten in Flissigkeiten mit kleiner Reibung."

Zeitschrift fiir Mathematik und Physik, Band 56, Heft 1, 1908, pp. L — 37.
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thickening of the boundary layer. That the outer flow separates at a
certalin place, and that the water, set in violent rotation at the
boundary, leads into the open, must be explainesble from the processes
in the boundary layer.

The exact treatment of this question was undertaken originally
by Prandtl (Verhandlungen des intern. Math. Kongress, 1904). This
explanation of the separation 1s repeated below. Since the integration
of the hydrodyneamic equations with friction is & too difficult
problem, he assumed the intermal friction as being smal], but retalined
the condltion of adherence at the boundary surface. In the present
report, several problems, based upon the simplified hydrodynamic
equations resulting from Prandtl's article, are worked out. They
refer to the formation of boundary layers on solid bodies and the
origin of separation of Jets from these boundary layers suggested by
Prandtl. The writer wlshes to thank Prof. L Prandtl for the sugges—
tion of this articile.

2. The constant of the internal friction is assumed small as in
Prandtl's report. The boundary layers then became correspondingly
thin; the fluid maintains its normel (potential) velocity up to
near the boundary surface. Nevertheless, the decrease in velocity
" to value zero, and, as the calculation will show, the separation
in this boundary layer must, naturally, continue, and so the potential
flow iz not completely regained, even at arbitrarily 1ittle friction;
rather the separation and, the transformation of the flow effected
through it behind the body must prevail even at arbitrarily small
friction.

The procedure ls limited to two-dimensional flow and coordinates
parallel and at right angles to the boundary (arc length and normal
distance). In spite of its curvature, the type of the basic equations
in the narrow space of the boundary does not differ perceptibly fram
that for rectangular coordinates. With € as order of magnitude of
the boundary-layer thickness '

-
u

e 1 ol

1

‘!-i b



NACA TM 1256 ‘ 3

»
u, 1 Fu, 1
oy € dy2 €2
as the velocity u over this distance is %o Increase fram zero to
normel values; u, @, QJ-, and &1- have normal vealue; from the
ot~ ox
equation of continuity follows then %E- ~ 1, and by integration, v ~ ¢-.
7 .
The terms in the fundamental equations obtain then the following
order of magnitud.el
du  du du dp Fu Pu
ple— + oo + Ve | = = — + || — &+ —
. & ox o) & \a@ ¥
1 11 eex 1 1 +
~ € 2
pav.;-uéz.i.vav =_..a.P. k_v+§i
ot ox oy oy dx2 e
€ l-¢ €.1 € %
du , ov
+==0
dx oy
1 1

_ The friction gains influence when 1t 1s put at k ~ eg ;3 this
gives the relationship between boundary—layer thickness and smallness
of friction constant. In the first equation, the term 8211/61:2
cancels out; in the second equation, only Jp/dy ~ ¢ ©Or, when
allowing for the coordinate curvaturs, ~ 1 remainsl. In both cases,

lpliowance for the curvature of the coordinates produces, as is
apparent when reforming the differential quotients, only in the second
equation & not—to-be-neglected term pu2/r if r is the radius of
curvature. This term is of the order of magnitude, unity.
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the effect of the pressure on y 1is to be disregerded since, in the
narrow space -of the boundary layer, the integration of Jp/dy can,

at the most, produce pressure differences of the order of magnitude

€2 or g, or, in other words, pressure and pressure difference

dp/dx are independent of y, hence, are "impressed" by the outer
flow on the boundary layer. The velocity of the outer flow next to
the boundary layer is dencted by T and is to be regarded solely

ags function of x %because the really exlsting dependence on y, when
campared with the substantial variations in the boundary layer iteelf,

can be ignored in the sense of the foregoing omissions; v i1s accord—

ingly a ¢ = JE; hence becames zero with k. The remaining fundsmental
equations for the boundary layers are then:

p(ég + uéE + v§£> = p<-a-E + ﬁ%%j)+ kéEE

ot ox oy ot dy2
a_u.+§';=0
ox Jy
Boundary conditions are
for y = 0: u=0 v=20
for T = ! u .

These equatlions establish, to a certain extent, a basls for a
special mechanics of boundary layers, since the outer flow enters only
in "impressed" manner.

3. The qualitative explanatlion for the separation of flow
according to Prandtl is as follows: +the pressure difference, and
with 1t the acceleration, lis, apart from the frictlon term, constant
throughout the boundary layer, but the velocity near the wall 1is
lower. As a result, the velocity here drops soocner below the value

L

lll |

.



NACA TM 1256

zero for pressure rise than outside, thus giving rise to return flow

and Jet formation, as indicated by the velocity profiles in the figure
below.

The region of separation itself is therefore characterized by

Su

— =0 for y=0
oy

This explanation does not work like the Helmholtz Jet theory with

an ad hoc assumption, but only with the concepts forming the basis

of the present hydrodynamic equations. The stream line, which bounds
the separated part of the flow, departs at a certain angle fram the
area of separation since the stream function V¥ develops

around the separation point [x] in the following mammer:

¥ = cly3 + co(x ~ [x] )ye

Ag & less important effect, it is to be foreseen that, as a
consequence of the stagnation of water effected by adhesion, the flow
is pushed away fram the body. Through this and the reformed flow aft
of the body, the flow upstream from the body is, of course, affected
also, so that the assumption of potential flow is insufficient for
quantitative accuracy of results and must be replaced by experimental
recording of the pressure distribution.
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I. BOUNDARY LAYER FOR THE STEADY MOTION ON A FIAT

PIATE IMMERSED PARALLEL TO THE STREAM LINES

The flow proceeds perallel to the x-axis. The plate starts in
the origin of the coordinates and lies on the positive x—axis.

In thls very elementary case, there 1s no pressure difference;
hence, no separation is expected. However, the calculation is
carried out to illustrate the mode of calculation to be used later.
The fundamental equations read:

du ou Bzu
él—a—x-'l-vay) aye

Su oV _

ox oy

The equation of continuity is integrated by introducing the stream
function V:

Sy ox
Boundary conditions are:
for y = 0O: u =0, v=20
for y = o u = U, <— congtant

1. According to the principle of mechanical similitude, the

equations cen be simplified when & similitude transformation converting

differential equations and boundary conditioms are known: multi—
plying x, y, u, v, ¥ by the factors x5, Yos Uos Vo, 804 VYo Yresults

in

e k Uodo

Vo = Xo ° Vo = uoyos; Upo = U

as conditions that the problem and its solution are transformed, and
that, through the transformation, p, X, W = 1 are created. The four
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equations still leave & degree of freedam in the choice of the
factors x5, Yos Ugs Vos 8nd V,. The last three equations define

the factors assumed by wu, v, and V¥ through the transformation; the
first states that the desired solution of the problem transforms in
itself, provided only that

2
° _1

w[2,
H|=<:

(o)

or in other words, with consideration of the factors which u, v,
and | assume, the condltion can depend only on

Sk

b
X

By this argument, the number of independent variables 1s reducsed.
Next

g=1/2@.r5;

| W=J%“Tﬁ~§

are introduced; { is then sole function of & and

u = 1/2 uf!

v=1/2\/-’§'f%<gcf-§>

Insertion in the differential equetion glves

6g" = — gm
Boundary condltions:

for ¢t = 0O: gt

n
o
T
|
(@)

fram u = 0; v =0;

for £ = o ¢ =2 from u = u-
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2. The integration of these and subsequent equations is effected
by expansion in series: expansion in powers for £ = 0, asymptotic
approximations for & = ». The boundary conditions at both points
being glven, one and two integretion constants, respectively, occur
in the expansions. They are defined by the fact that both expansions -
must agree, at an arbitrary point.in the function value ¢, to the
first and second differential quotient. The agreement of all differen—
tial quotients 1s then assured by the differential equation.

3. Solution of the above equation by expansion in powers =

ge" = L=
for & =0 with the boundary conditions at this point -
£t =0 tE =0
is effected by N
_ Z n cpoftl § 3042 «
£ (-2) (3n + 2)'

which 1s so chosen that the coefflclents ¢y, to0 be defined are
whole posltive numbers, which simplifies calculation. The

factor oP+L brings out the nature of entry of the integration .

constant; co, which otherwlse would occur as such, can then be o
put as co = 1. The recursion formula for c¢, reads -

n—1
Cn = Z ( >c\;cn—1—v

The first of the thus camputed coefficlents are:
co =1 oy =1 cp = 11 c3 = 375 cy = 27,897
5 = 3,817,137 206 = 865,874,115 c7 = 298,013,289,795

On account of the convergence, the denominator (3n + 2)! was used in
the previous equations; &' and " are easily formed.

2The coefflclents cg and c in the original thesis are
incorrect. This error has no effect until the fourth decimal.
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L. There 1s an additive integration constant for { in the
asymptotic approximation of ¢ Dbecause

for & = e £t = 2.
" hence,
§ = 26 + const. = 27
80 that 1 appears as new coordinate shifted toward ¢.

To compute & first correction §,, put
£ =20 +¢§

which gives

2n g]_“ = "91"

with the sgquares of the correctlons disregarded, hence by integration:

1 1 o n 2 2
¢ =7'fdnfe_"dn=7nfe_“dn+ze_“
l o [--] 0 2

1 _ 2 2
=7 [ g e
-]

The general procedure for computing the other terms is such
that further minor corrections ¢, are added and its squares dis—

regarded. The result is a set of linear differential equations for &p,
the left, hamogensous slde always the same; at the right, the error

appears as "impressed force" which the sum of the preceding approxima—
tions, inserted in the differential equations, leaves.

5. The obJect ls reached much quicker by the following argument:
The differential equation for gl

2 T] glll

_gl
arises from the original equatlon

g = ¢
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when the roughest approximation § = 27 1is inserted at the left for £.
Obviously, { has the least effect at this point, and the differential

equation is then Integrated as if ¢ were known at this point.

¢ = f 1]dln‘/’ ndne"lﬂgd”

The three integration constants are contained in the arbitrary low
limite. Putting € = 2n at the right gives §; at the left, but

putting § =2n + §; at the right gives

c-[ ndnf YanPad futn

or with consideration to the boundary conditions

: n n 2 n
§=2n+7/ dn/dne"n<l—/ ;ldn)
-] o (- -}
n 1 |
=2 + g]_—'r/ d.'q/ dne“nz/ §dn
[ -] 00 00

Hence, the second asymptotic approximation

N 2 M m  p_2
§2=—72/dn/dn-e"”L[dn/dn/e"dn
-] {--} (-] [-<)

By partial integration

. 2 2 n 2 =)
L' =~ ZL;-(E’n2 + 1)e™ / e""ledn - Zh—ne‘e'ﬂ
[=-}
2
o 2 M 2 2 T 2 2 2
Eot = Z—ne—n f o 1 dn - 2= / Al dn + 7—-e—2n
4 0 h o0 8
2
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6. A general statement about such integrations reads as follows:
According to the formula

| : i
/ e_ﬂznnd_n = = %-qn_le—'ne + n'e_——;‘- / e—nznn—edn
o )

to be gained by partial integration, each integral of this form can be
2 n_.2
reduced to the functions e ! and / e N dn multiplied by powers
[--}

of 1. After several such integrals are obtained, the innermost is
transformed, if necessary, in the indicated manner. The integral e

n_.2
or f e dn mltiplled by powers, appears then below the penultimete
o

integrel sign. The former gives no new difficulty; the latter can be

2 n_2
reduced by partial integration to the two functions e~ and d/ e~ dn
[+ -]

| | i
l dn f e"'lzd.n =17 / e—ﬂgd.n + %e—’ﬂe
o0 (-]

m n n_ 2 n
ndn e‘“edn = 1—112 e~ M dn — L f e‘nedn + -J=ne"n2
2 b o n
-] (=} -}
e ~Pan = 23 | ean + Ln2e—° 4 Lo°
nedn e ldn = -341 e | dn + —6-11 e + -6-9 and so forth.
00 0 0

If, as above, the integral can be quadratic in e"ﬂa s four types
mist be distinguished:

2 2 2 2 2 g 2
Sl s e N /,ﬂ e 1 dn, /ﬁ o1 dn) / e_en dn
o <] x

multiplied by powers of n. The flrst and fourth types give nothing
new. Partial integration provides for the second the formula

1 1 _» | 2 n_ o2 n
f e—qed.'q f e N dn = /7 e_nzdn - / e M dn / e“ﬂadn
-} [+ -} - -} [--)
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or

and

n ) n_ 2 2' n_2 n 2
f ne™ M dy f e dn = — %‘e‘n / e N an +-2]= o= 4n
00 /00

®

and so forth.

Likewlse for the third type

n M o 2 n_ o 2 - o fn 5 n
/ / o dnf dn = 7 / e M an + e A o~ dn — A e'enedn
(-] -]

o0

n AN 2 n_ o 2 p N o
/ / e_nzdn ndn = %‘né{ f e dy + %ne_n f e M dq
o0 =] -] oo

n 2
- %{f e‘nadn} + %‘e‘ena and so forth.
' 0

Since no new types for integrals are introduced by these formulas s

the indicated tables of formulas govern all integrals in which e
occurs no more than twice. Any number of successive integrations

over such functions are possible; the powers of 1 involved are
unrestricted. The formulas for {, in section 5 were obtained by
this method. These lntegrations wlll be met agaln later. With the
type of integration results thus known, the calculatlons can be made
by utilizing & formula with Indeterminant coefficlents.

7. With this differential equation, 1t is possible also to define
the error that afflicts the present solution as a result of the effected
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amissions. Tt is easily verified that 2n, 2q + §;, 2n + & + b
remain below the true value of . An upper limit can also be found
by employing the previocusly glven (see Section 5) form, somewhat
modified

i
1 i 2'/(§“2ﬂ)dﬂ
L = 2n+7/d‘n/‘dne—ne ®
-~} [--}

of camputing a finer fram a rougher approximation: a rather arbltrarily
chosen upper limit, such as the first term of the semiconvérgent
expansion of §,, for instance, 1s entered for § — 27, thus

- A
E-en<y 2

and an asymptotically finer upper limit for &", ', { is camputed
fram this assumption. It is Iinsured so long as the latter remains
below the assumed one. The calculation gives (according to the general
formula)

2
‘/’we—neﬂ _lel v+l [ gnPdn
v 2 vl 2 Jp nV+2

- 2
(6 —2n)an <% & = 9
l/: k §n3

n
—/ (¢ —21)an
e @ <e’3
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oy

Figure 3

The upper limit for ¥ 18 then Pound according to the above figure as

eﬁo -1
o)

ed <1 + 09 g =

where d, 1s the highest existing value of 9, hence corresponds to
the value of the coordinates for which ¢ 1s to be camputed. It

resgults in
t < 29 +7 d'q d.'qe_'rl l+o’7e_ﬂ)
8 n3

2
2 _—27
(<]
n
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similarly for €' and ¢":

2 1
Ers 24, — 022 21

—21]2

" 1 2
" <ty
n

A more accurate execution of the integrals affords & more accurate
result.

8. The connection of the two developments and the determination
of the integration constants (a, 7, and 17 — &) 1s as follows: To
separate the integration constant «,

= lgg X=%§

&

[

is introduced in the power development (3), which results in

The displacement of n relative to ¢ 1s expressed by introducing
the integration constant 8

\Jon =X —p
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The formulas are completed by inserting

g = 27] -+ Cl + §2
gl =2 4 gl' + C2'
gn = Cl“ + gell

fram the asymptotlc approximation (4) and (5). A graph is made for Z
and 1ts differential quotients fram which the following values are
quoted:

X= |fojo.8 |1.0 [1.2 J1.k% [1.9 |2.0 [2.05 2.1
Z = 0]0.317]0.492| 0.701| 0.938 | 1.63| 1.79| 1.8561 | 1.94
%= O .78k | .961}1.121| 1.257 | 1.50 | 1.53 | 1.5479 |1.56
4tz _ 1| - - - 639 | .3h| .28 .2582 | .23
ax2

23
c .
The terms of the power series are camputed up to gﬁ' 3 further terms

are extrapolated, in part, fram the difference series of the logarithms

of the coefficlents. The location of the asymptotes is already quite
apparent in figure L. :
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1.67 | .
A0
6'1’/4 o <
s N
,
1.0 +°
2
% {e
dpa s
e~y
“’/
» X
1.0 2.0
Figure 4

Since owing to { = 21 asymptotic, Z = _23/_3-(X — B), rough approximation
o

values can already be read for « and B: o = 1.30, B = 0.96,

with X = 2.05 as connecting coordinate for 1 = 1.00. The corresponding

a2z
axe
more rigorous when a, ¥, and the connecting coordinate related

to 1 =1 are varied by minor corrections and these then computed
fram linear equations. To Judge the accuracy, it is stated that our
calculation for X = 2.05 gave

values of and t" give for 7y: 7 = 0.92. The calculation is

2
Z = 1.8561, %Z(. = 1.5479, Q_g = 0.2582, % = —0.479
dx ax

where the fourth decimal is no longer certain. Asymptotic approximation
{+ )
2
for n =1 gives (using Markoff'sf e—at)
t
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e
il
N
+

_ 0.00012] .2
O-Obk5k - 7 + {0.00106} 7

0.00076
L' =2 —0.13940 7 — {o.ooug3} 7

0.36788+ 7 + {8:?,2222 2

the top numerals in the { ;stemming frem {5, the bottom numerals fram
the upper limit defined In (7). (The latter is, as stated before,
rather rough.) The "temporary assumption" about the upper limit of
glves: § <2 4+ 0.092 7. The upper limits are therefore guaranteed
(reference 7). Hence, the result

g"

a = 1.3266, X = 2.049kL, y = 0.9227, (B = 0.9508)
It can be safely assumed that o ranges between 1.326 and 1.327.

9. From it, it can be computed, for example, what drag a plate of
width b and length 17 18 subjected to when dipped parallel to the
flow lines into & flow moving at velocity . The drag per unit of
surface 1s

= 51‘3'-: gerl Lﬁ_.l.:
Xy kay 2 ‘ 2V k \x
=2 Jixphd L
n kpta ‘{f

Integratlion over the plate gives

1
b | X ax = W [kp1u3
(o] 7 e

hence, when the water flows at both sides of the plate

drag = 1.327- D \/kp2ﬁ3
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II. CAICULATION OF REGION OF SEPARATION BEHIND

A BODY DIPPED INTO A UNIFORM FLOW

1. The following problem is treated: In an otherwise parallel
flow, a cylindrical body is immersed symmetrically to the directlon
of flow. The boundary—layer coordinates are camputed fram the point
of division of the flow. The quantity W 1is expanded as function
of x 1in a power series. For the integration of the fundamental
equations

du du _ =W Lk Fu
u5-£+v~é§ 113;+E-—ay2
u, .o
3x T oy

the formula
w -
Vv = 2 Xz(:)r)x21+l
1=0

is used, with due regards to the symmetrical conditions for the
stream function V¥; u and v are cobtained then by differentiation.
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Figure 5

bl .

Consistent with the general boundary conditions, the functions X (y)
must then satlsfy the boundary conditions

L]
(@]

X' =0 X, =0 for y

i
8

X, ' = 1, for y
hence
XZ = qu + rZ _

.ry 18 the constant of integration. From insertion in the first -
fundeamental equation, the differential equations for X are obtained
as:

1
> (2 + D% 3" = %% ") =2 (2n + )94, + %"XZ'"

1
A=0 A=0

which for 1 =0 is guadratic, for 1 >0 1linear In the X; funétion

to be defined. Thils equation can, 1llke the preceeding problem, be

golved by expanding y = 0 in powers, for y = «» approximating

asymptotically and Joining both. Subsequently, it 1s shown that the

egymptotlc approximation can be amitted, since the power series already
ldentifies the asymptote and therefore the integration constant with =
sufficlent accuracy. The calculation is restricted to Xo and X1
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that 1s, the first and third powers of =x. Because, slnce the corre—
sponding coefficients 4, and g 1In u already indicate a first

increasing, then decreasing velocity — the case, in which Presumably
separatlion occurs, is characterized by a4 > 0, q; < 0 — the type

of pressure distribution required in the introduction ( 3) is already
supplied by the first two powers; hence, it is to be expected
that X, and X1s even though not quantitatively exact, already

represent the effect of the separation. In one of the problems
treated in similar manner later on the next approximation was also
computed; and it substantiated the admissibility of the limitation
to the first two powers of x.

2. The equations for %, and X; are

%'% = %oxo" = 8t + Fro™!

1y t _ n 1y, 1 _ wy _ k, m
%' X = %% # 3(x % X %) bg a, + %1

The manner of entry of 995 975 k, P can be established by mechanical

similarity. Here also, the first two terms indicate universal
significance In some respects. Hence, writing

= qox + q_lx3 ¥ = 'xox + )&13

and Introducing the followlng quantities

[y ,pqo v 2pq
E=\=x = {=7v f, = %X, & = [|—3%
40 2k o kqo . 1 kq-lz

for z, y, Xor X1 gives

£l
]
1
]

LY
uve
H-
uw
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_I/k‘loe 3
Vo= qul(cog t £, 83)

3
ottt 'B) ete.
1

21
u 2(1

Co and {, satisfy, as functions of 1n, the differentlal equations

goﬁz _Cogon =h + cou

héo'Cl' - 350" g_']_ - Cog_']_" =16 + gl" !

Boundary conditions

]
(o]

for n = O: o =0 8t =0 £, =0 ;'

for n [--29 ;o'

3. For §° the power seriles

o0 au+Lb
Lt => ' LNt
p,=2 p"

1s entered.
Ingertion In the differential equatiom glves:
by arbitrarily = 1, since « already 1s integration consgtant.
th3 = —4; since, in the formula of the integration constant a,

no allowance was made for the hamogeneity of the equation for £ oo
o appears again in this equatiom.

by = O; the curvature of the velocity profile does not change,
at first, since the frictlon in its effect is two terms ahead of the
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inertis; starting fram m =.5, it is
L =l-li—2 l:(p - l) - ( " )] byubm-14

The coefficlients of these recurrence formulass can, like all numbers
cambined this way fram binomial coefficients, be camputed fram a
diagram similer to Pascal's triangle, whose start is the followlng:

m Rl A)/1/2/3/h/5/6/

3
i
3 S/ /i Xy S S S

—l/ 2 /0

7 Z1/3 fLo/2 /3X1
8 144 /o5/0/5/ X1/

and In which each term is the sum of those above it. Only the
fremed—in porticn, consistent with the foregoing limits of sums,
is countsed.

The first 13 coefficients are

by = 1 by = - fE by =0

by = 1 bg = 2b, b, = 2‘b32
bg = -1. : b9 = -hb3 big = —16b32
by1 = 27 — 16b33 bip = 181bg byg = 81+Ob32

k. Besides o, two more integration constants due to the
asymptotic approximation are Involved, which, as in the preceding
problem, should Join the camputed power serles. For the present

23
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purposes (calculation of point of separation), 1t is, however,
sufficient to know a, and, as stated before, it will be seen that «
can already be computed with sufficlent accuracy by means of the
power serles. :

4z :
Put Zg = &1.go, H =an and plot === as function of H fram

=
az, ' I
the power series. il 1teelf 1s still dependent on b3 = - ﬁ and
az
shall, for the correct value of «, approach the asymptote aTo = -%
04

For other values of «a, 1t approaches no asymptote at all, as & result
of which as fig. 6 shows, the method for defining o is very
sensltive. The valuse o = 1.515 1is obtained; the last cipher i1s no
longer certain. . '

1z
)

dn .
t.or —= 0.86
)
0¢B7 |——p
0.87————
0.88 '
0.90
0.5
2
- =\ 1s 00
ol

Figure 6

5. The calculation of C,_-L by the above linear equation and the
boundary conditions ls effected In similar mamner: power formula

Cc
§l=a i—%ﬂ“

p=2 M
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cp = 1, since B already.ls integration comstant; B8c; = —16;
c)y =0; and for m 2 5:

°m =§[—3(§ Z 3) + “(ff N 31’) - (m;f )] o byon 1

Here also the coefficlents In these formulas can be camputed
fram a diagram whose first line (m = 3) comsists of the mmbers -1,
+4, —3, while the others follow by addition:

L AA/A//5/6/7/

3 7178/ 7

4 1 /3R s L / //
5 /1 /2 ==/ / /f
6 /1/1 /3 S

i /—l/77/8/3>(—8/-3//

8 /- 145 /5 AIX1Y 3L

The first coefficlents are
cp =15 803 =-16; o) =05 o5= bad; cg = 6a3c, — 8;
o = =32c; og = 17065 o9 = 300%; — 22ka3;
eig = —576a3c3 — 2565 ¢y = 2048c, + o9k’

3
c1p = 783cz9c3 _ 5092 c13 = —17392a6c3 + 506480
Cyy = 221952@303 - 315«:.12 — 136192;
015 = —11025a.12c3 ~ 10240000, — 5486ka”;
¢y = 17&16&;%3 ~ 2212968,

6. The asymptotic approech is again disregardedi the integration
constant ©® being defined by the condition that §l must have the

agymptote gl' = 2. Figure T shows the terms of the power series
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for Cl‘, those free fram c3 and those multiplled by c3, a8
curves A and B, that 1s

glt =8'A—l6'B

after which Ql' ig plotted for different values of 5.

[
{1
B.OF
5.0
4.0
3.0p
3 = 82
8. 20
2.0 >
1.0 A
B _
1 [ | L,n
0.5 1.0 1.5 1.7
Figure 7

This curve indlcates that the convergence of the series is rather poor
in spite of the great number of camputed coefficlents c, even

at n = 1.6. In any event, the terms indicate, when identical powers
of o are cambined, & satisfactory variatlion so that the seriles are
still practicable. The correct value of & renges between 8.20

and 8.30. The curve rises, at first, very quickly and approa.ches

its asymptote fram ebove. This marked influence on u near g =
campared 0 1 =« Dermits u in the case of separation to change
signs at the boundary before 1t does on the outside.

T. Proceeding to the calculation of the polnt of separation, it
will be remembered fram (1) that, quantitatively, the results are not
exact, since only the first and third powers of x were taken Into
consideration. The point of separation [EJ is defined by
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l{' " 11
=%= g—]qsqo—l(go" [g]igl [E,]3) for =0 - =

or by (3) and (5)

o3 xst]2 =0

By (&) and (6), respectively, o = 1.515, & = 8.25. Thus, in the case
of the lower prefix, the only one of interest, the coordinate of the
point of separation is

[g] = 0.65

] - o.ss\/%

o= QX — qlx3

hence

with

The maximum of the velocity (minimm pressure) lies therefore at

x = 0.577 |2

while zero velocity in the outside flow would not be reached
’11
till x = 1 - ag. Accordingly, the polnt of separation is 12 percent
1
of the total boundary-layer length behlind the pressure maximum. The

obtained figures are independent of friction constant, density, and a
proportional increase of all velocities. '

According to Prandtl's dlagram (section 3 of Introduction) the stream
line V¥ =0 diverges fram the boundary at a certain angle, which is
camputed as follows: In the vicinity of the polnt of separatlon, the
development of the expression for ¥ given in (2) reads .
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kq i ‘ ’ n n
V= \/gp—;-l- (e B - e E]3n3 + 360" — 3t F1 (e = [

¥ = 0 glves for the divergent stream line

2
L 3B -

= 3 =1
E— ] T16[g)3 - u[g]

or in the not-reduced coordinates

TR 11. ——rr
X - > Pdqy

These formulas are characterized by considerable uncertainty because
only two terms of the development of V¥V were camputed and the higher
differential quotients, which represent more subtle processes, are
always less accurately camputed than the former.

IITI. FORMATION OF THE BOUNDARY ILAYER AND OF THE ZONE

OF SEPARATION AT SUDDEN START OF MOTION FROM REST

1. The two preceding problems treated stationsry flows. The
problem of the growth of the boundary layer is now treated. Assume
that a cylinder of arbitrary cross sectlon is suddenly set in motion
in a fluid at rest and from t = 0 18 permanently maintained at
congtant velocity. At first, the state of potential flow 1s reached
under the single action of the pressure distribution. The thickness
of the boundary layer 1s zero to begln with, so far as the sudden
velocity distribution can be obtained at all. The boundary layer
develops in the first place under the effect of friction, then
through the convective terms. The result ls that, after a certain
time, the separation starts at the rear of the body and, fram there,
progresses gradually. Since the fundemental equations refer only to
thin boundary layers, they, naturally, represent only the start of the
geparation process, Just as the previous prcoblems dealt with the boundary
layer only as far as the zone of separation.
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2. The equations involved here are

ou  du, du_-dm, .du
at'i'u'&--i-VFy—B;-l-K—a—yE

o

I
1%

q

1l

|
OJ|0/
M=

®# substltutes for %

The potentlal flow which 1s set up first gives the boundary
value U as function of x. Since the process for ©t = 0 1is singular,
the type of development is, for the time being, still unknown; it
must be esteablished by successive approximation. The principal influence
on the changes has (&t small +t) the friction, hence, for the first

approximation ug

P,
52

dug
3t

The integral of thils equation

[

— 1 2
= 2u i d
° ﬁ L/:) ° b

N
2 \rt

satisfies the conditions of supplying a2 vanishing boundary layer

for t =0 and of joining the outside flow uy, =u for y = w. The
subsequent approximation is obtained by inserting uy 1in the
convective terms, while time and friction terms obtaln u = u, + uj .

The resultant equation for wu; reads

Su 82 -
Yl = nay;l + ﬁ% (function of 1)
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According to mechanical similarity, this equation is satisfied by the
formula

~ou
ny = tux== f
1 ox (n)

which is also not contradictory to the boundary condition u =0
for y=0 and y =

After further considerations, which in partlcular refer to the
ingertion of x, the quantity wu 1s represented in an expansion in
powers of 1, the coefficlents of which are functions of 1q, that is,
gt1ll contain +t.  These functions are also still dependent on x,
but this time x enters the differential equations only as paremeter.

3. The formula for ¥ 1is accordingly

- 2\/kE T t¥x(xn)

v=0
=
2 Kt
]
V=0
and hence the differential equations for X
X Px, x
p"a"' "l‘“# ( e :‘V EH)
a.n3 V=0 M Bﬂ X B'q

for u = 1, the right—hand side cantains —hi%u;-.

As before, the calculatlion is limited to the first two terms,
that is

Xo = to(n)  x = 5, (n)
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hence
u=1uf? + ﬁﬁg%{l'
The equations tor ;o and ‘gl read then
g, +2anf ) =0
£ wonb" — et = B -t L 1)

Boundary conditlons

for n = O: §o=0 §0'=O
= | -

cl"o Cl =0

for 17 = e 8! =1 §' =0

4. The solutions of the sbove differential equations, which are
to be used in the subsequent problem, ere obtained by quadrature when
the hamogeneous equations are Integrated. The latter integrals were
obtained by the followlng consideration: The homogeneous parts of
the equations stem from the time and friction term which together
form the heat conduction equation

u _ Pu
ot dy2

Of this equation integrals of the form

up = 22, (n)

T]:—I—
s
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exlist, according to similarlity considerations, whereby f, satisfies
the differential equation

£+ 2nfyt = bofy = O

which the above form possesses.

Thus, for example (see above)

Ui 2
-2
uo=fo=v—; fe_nd'q
[ ]

For T]=0

u, =1 when t >0

u, =0 vhen t <0

For n = 0, hence, for y = 0, u, 1is proportional to t1, hence must
be representable by superposition of solutions u, in the following

form
® n—l
w, =1 f u, g > -to dto
° 2 \fk(t - ty)

N4 1
=n [ u, L “tor b,
° 2 \fk(t - %o)

gince for y =0 1t 1s

K n—1
=n [ ty db, = t%
o)

For the evaluatlion of this Integral, put + — t5 =7

° -1
un=-nL/: uo(;\-?-_k—;;> -(“t‘,—'r)n dr
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insert herein

..—L:T]; _L.=§,
2 Vit 2 \kr
_ 1 _ 1 y2,
v =gk B T'h_kgz’
1
.
21~:§3

and finally cbtain

Ftn“enf@('lz "5) f T

Calculatlon of this integral by the binamial theorem and the
previously cited method of partlal integratlion finally gives

Z(El-l - gl)l?. 3. 1'1 (/;ne—nedﬂ

u=0

n
n n 2\!—1( )
+ Z Z( )M u 2V—1-—n2

v=1 |p=y (2 1)...(2p — 2y + 1) k

The other integral is algebraic and equal to the above factor

n
of f e"‘“ad.-q
[}

é ' =Zn 2#(2) 2

nooeo(en - 1)...3.1

5. Quantity Co 1s determined as follows: With the boundary
conditions taken into conslideration

33
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n_2
§'=l+—2—_ e—ﬂdn
o VT o

whence by integration

8
~_N_

n 2 2
= — L 2 ~N=q 11
to ﬁ+n+ﬁ(nfe N+ Ze

while utilizing

C "o .2_e—n2

° =

The second differential equation (of the second order for §l')

agsumes then the form

16 M2 8 2 16 N2 (2
"aone" —bet == | e Vdp — e 4+ =2 e d
& né, ¢, W= Jl Ul n

& | e
2 2 2 2
— ne™ Jhe—nan_%e-en +%e-n
(o]

The integral of the hamogeneous equation for (' is by (L)

2 1 2
fl = m(zqz +1) +B|ne " + (2n2 + l)J1 e N dn
[}

The integral of the nonhamogeneous eguation would then be
obtainable by quadratures. But 1t 1s also true that, by twice
differentiating, the differential equation finally becomes

gum 4 oqeun o function of 1
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which is easier to integrate as &an squation of easentially first
order. Hence

o N2
;nn-:e"'q ‘[oeﬂ [func'bionof Tl]d-'rl

2
Since the impressed force of the aifferential equatlion contains o N

2
in each term after twice differentisting, o1” cancels out, and L™
and then ¢ can be integrated, because the functions behind the

integrals contain, et the most, e—ﬂ twice, and in addition, powers
of 7, and must pe integrated several times, which can be accCm—
plished by the methods discussed previously (I,6). The result of
%the rather voluminous calculation reads

2 N _.2 n 2 2 2
L.t = -6--'qe"n f e .dn + 2(2q2 — 1) I e~ M dn + 26720
1 P - x - P

2 T _2 2
+ -]-'-ne—n 2t eV an — -)i-e_'Tl
5 ‘F( © 3x

n_.2
+a(2n? + 1) +B [ne"’nz + (22 + 1) f e 1 dr{\
! ] .

-

2 M _.2 n_2 \2 2
Er o Z(eg? = e e |V dn + §n J, o Vanf — -a-'qe—en
1 b1 © b © T

— (22 + & 4 B —n®
ﬁ(ﬂ 3) ‘—3:{’\'19

' |
+ bon + B ‘:26‘“2 + b Lr e'nadﬂ

The reason that the equation here could be integrated in closed
form, despite 14s affinity with the previously gtationary problem, is
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due to the fact that % is simpler than u-gE, although both have,
>

according to the order of the differential quotient, "heat conduction
character."

The determination of o &and B Iframn the limiting
conditions &' =0 for =0 and 7 = o gives

_ . 4
a=0 B—T%“LSEE‘

6. For camputing the zone of separatiom, there is

_au_ s n -a]—l 1t —
0_55-_ (uCo + &]UE'EC’J_) for 7 =0

Then

gn____E_ gn=

2 ,_8
o T\ L TVRT 3R

The condition for the time of separation [t] 1s

L ST _
l+(l+§-;> Ec]&-_o

hence, g—az must be negative. The separatlion occurs first where %%

has the greatest magnitude. The result applles to cylinders of any
cross sectlon; @ 1s the corresponding potential flow.

IV. DEVELOPMENT OF ZONE OF SEPARATTON FROM REST

AT UNIFORMLY ACCELERATED -MOTION

1. Against the physical principles of the foregoing problem, the
obJection may be raised that the sudden shock might be accompanied

|1|
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by an interruption of the £luld. Hence, let the solutlion of the
problem assume that, starting fram the time + = 0, the immersed
body is subJected to comstant acceleration.

In that case

2. Fram considerations similar to those made before, the solution
of the differentisl equation

du, . du_ du_ S
ot ox oy P Bx 8y2

is based on the formula

<
]

2 Ykt . vztavﬂxewl(xﬂ)
=0

u =

Z (2V+1 Foyal 3X2v +1

J
2 e

Insertion in the basic equation gives
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) ¥S§%- Mol Fop o1 _ Hoppu1 FHopal .
25| ooy > e

for A = O, the right-hand side comtains —hw, for A = 1, -hw%%.

The calculation of the state is again limited to the first two
terms, while it should be noted that through those two terms, the two
terms of the pressure w + tew%E are alsc taken into consideration.

X
The impressed force of the next equations contains only earlier
development coefficients. For the final equation, however, which
supplies the zone of separation, the coefficient of the next term is
camputed also. For X; and x3 the relationshipy of x can be

introduced in the following manner:

X =gy, % = »%;3(11) '

The differential equations for { are then:

3¢ e at
1 + 27 Iyt %

an3 an2 =

3 2, 2
St ¢ 3t dt.\2 ¢
3+ 2q 3_m?=4+u<—%-¢ri
5113 Bn2 on on

Boundary conditions:

3
for n = 0: §l=0, 3%3-'=0 u=20
¢ from
g = 0, —1 = O ¥ = O
o 22
= _l = —é = . = t
for 7= o S 1, S 0 fram u w -
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3. According to the general solutions of the present type of

9
differential equations discussed in ITI (4), -é-§—3= cen be written
|
ofy
forthwith, since the nonhamogeneous term -4 1is disposed of by 5= 1;

;l is obtained by integration by the repeatedly clted method (16)

aT]2 ﬁ o

ot 2
—L =142 [ne 4 (1 +29°) e_nd]
"] \E[ﬂ y| . |

ol
+ (30 + 293) f e_nad-q:l

0

These functions are quantitatively plotted in figure 8 and given in a
table (see Section 6 following).
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2.26

&
0.25 0.5 1.0 n

Figure 8

The impressed force on the right-hand side of the second equation

is then
LI n -
i6 J\ e M an + 16 bn e‘ﬂzdn + 29""‘12
EXT 3 ©

n
¥ %’g [(-2 + 12)e 2 & (i & bnd)e f oan

(o]

1 2
+ (3 + lmh‘) f e‘ﬂedn
x
4. The integration of the second equation, in clogsed form, agein

succeeds by the same methods as in ITT (5). For the part of the

2
impressed force quadratic in e 1 a formule with indeterminate
coefficients is particularly adviseble. -
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2
(a + b2 + cnh)e'en

1
+ (dn + on3 + £1°)e~ nzf o—° dn

co
2
+ (g + 102 + 10" + xn°) { —nad'ﬂ

This formula fails when the impressed force contains terms which exceed
2
2 2 pu .2 n_.2
'q6e_2n s 'r15e.'rl f e 1 dn, nh f e 1 dn (campare ITI (5)). The
o [+-]

coefficients are determined fram linear equations. The other

X 3%
portions of —3 are easier to campute; §3 and —53- follow by

on n

integretion and differentiation. So, when the integration constants
are correctly camputed, the final result is

3 v 2 3@ f“e—n%n
a2 3\ ®

+ (1 +29° 4 Bnh)e_ne Jme“ﬂan
=]

2
+ (6n + 8n3 + 81]5){ fne—nzdn} ]

i35 _ 16 2 , 8ok’
+5<6V? u5\l§§>[( + 36n° + 817 )e

n
. + (60n + 8013 + 167°) f e_nzd-r;i
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£
on 3V Voo

2 N _2
_ e 1 +2q o | dn
15=n o

1 2 Iy 202
+9ﬂ[(8+n +2n7)e

b}
+ (24 + 800 + .81']5)6_1]2\/) e_'qu'q

o

2
1
F (=9 + 1802 + 120% 4 81]6) f e—ﬂedn} ]

1(5 16 5y 2
=== - (337 + 2893 + Un2)e™
15<61’T hsJ;) {

n_2
+ (15 + 9002 + 6onk + 85) f e M dn]

hence, by integration

. ;
Qp——- [e"'qe + 27 f e_ﬂedril
3 3% oo ]

_ 8 [ (14 o2y PP
l5n|:ne + ( +2n)£e dn

dl
. — [(14-911 + 1193 + lO'r15)e"2"12 + 768 j e"anzdn
315x o
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n
+ (537 + 19812 + 6un* «+ )-LO'r16)e'ﬂz f _'qzdn

o .

2
. ) ﬂ
+ (=315n + 21003 + 8hy° + hogT) f e"'fled-q

=<}

2

1 (5.__16 2 b 6y,
+ - (24 + 8762 + 4Oq" + 4nO)e
(-2

gl
+ (105q + 21003 + 8}41]5 + 8117) f e""]ad:q

[~}

128

. 128 . _ 9
15753 105{Bx  1Wx

These three functions, plotted in figure 9, rigorously satlsfy
the differential equations and the boundary conditions for the
coefflclent X.

5. The conditlion for the zone of separstion has the form

Y40 on o =0

whence, by the foregoling formulas

Fly azg3= 31 256
M2 VR 2 150F 225V«
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The equation for the separation time Dﬂ
31 23
1+ -
< 60 2251:) ]: ]

The next term in the separatiocn equation %% = 0 would

3P
read: ——-—1:5—-‘i and in order to be able to allow for it too, the
E\IK_t e
coefficilent in this separation equation, rather than the total
variation of X5 is computed.

1.0}
0.964

0,138 1=

Figure 9

The development term X5 satlsfliesd the equation

: 2 2 2
X5_2oax5=u a@axl_axlaxj % ¥ _¥%h
2 on On Odxdn  Ox 32 a-q Bxaq T x 32

The entry of x i1n Xl and X3 is known, and calculation of the

33
Xi + 27
3n3 on

right-hand slde confirms that X5 assumes the furm
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Since tw cencels out, the condition of separation reads

Rt 32 a2§
— +£29¥|1° 73 » t“(ﬁy —2 RNl =0

G d 2
'q=0 'q=0 g g

‘q=0 T]=0

32t
6. This leaves the calculation of the coefficients [——i

2
2
and !:E_EZ]
2
aﬂ 'q:O

For §5, the differential equation reads

3

) R o ot. o 2 2
—gia,en__;i_eo_gia s_f.l_f’i_ucl §3 _u§3 1 = £(q)
3n3 32 on o o 32 32

and the boundary conditions
at ¥s
E.=0, —=2=0 for 7 =0; for 1= w
g on o

The impressed force £(y) 1s given by the previocusly written

2¢

functions. The desired coefficients —52 are camputed by
a"l =0

Greents method as follows:
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3 5 o
o (3 P d >
L/)'\S C5-{-21~['c5...20._§_2 dnq = ) §5__a;8.a§ +2n13.§_§.2
o -Bq3 ana on aqz aﬂ aﬂ o

Then, 1f 3§ 1s made to satisfy the adJunct differential equation

3% =%
-2 — 289 = 0
S T

and the boundary conditions
9(0) = -1 4() = 0

the result is

s me
—-——2 == '8 o f . dn
an ' n=o o]

f(n) 1s given previously; the influence coefficient 4§ (Green's
function) is obtained by integration of his differentisl equation

s(m) = [(289571 + 528003 + 235297 +352q7 + 165°)

9u5 |

Ul
+ (945 + 9bs0n? + 12600n* + SokonS + 72078 4 32¢10)en” f 6"‘25"1}

The curve of § i1s shown In figure 10, along with the
product 8 * f. The area of thls last curve gives the desired
coefficient,
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0.61
0 0.256 0,50 1.0 o
'ﬂg/ g
af
4
-0,5
~1.0
Figure 10
For camputing o the equations
an2 =0
33t 3% X 3, 3 3%t
X 4 2 2 _ 002D = L |t —Cg—l =
on3 i 2 9 on on dn? stn)
¢ e
_—Z = f ,8. g . d‘rl
B'q2 nﬂo (o]

are aveileble; 9 . g 1s pletted 1n figure 10 according to the values

indicated below.
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The camputed values are the followlng:
n 0 0.25 0.50 1.00 1.50 o
§1 0 061 .211 .638 - n — 04376
ab, _
— 0 450 «T20 ‘9k3 — 1
on .
_a_e_f;_l 2.26 1.396 « 799 .201 0.035 o}
2 .
g3 0 022 .060 .115 - .138
a§3
—= 0 .137 .150 .020 - 0
o
fg’z .96k 231 | —.092 -.156 | =05 0
2
£(n) 0 315 $T50 - Wb45T - 0
g . £ 0 103 | —.08: | —.008 - 0
g(q) 0 124 .2h0 —.016 - 0
9 e g 0 —041l | —.027 .0003 - 0
The area of the two curves ls approximately
d 2
izi = ~0.058 _E.;E = —0.023
aﬂ n=0 on n=0
T. The equatlion of separatlion therefore reads
A, RJRow(3L _ —25—6{= - [t]u(@)e . 0,058 — [t]l‘wiz_w . 0,023 = O
Vx ax\15y7 225 fn3 ox ox?




NACA TM 1256 49

1 + 0.427 . &]2%‘; — 0.026 . [t]“(g—;)e — 0.01 . [t:ll‘%?_x‘z‘ =0

Since the newly added correction term is even negative, the existence
of the zero position appears to be certain.

The positlon and time of separation is agcording to the earlier
approximation (without the term camputed last)

29w
[£] S = 2.3k

For the case of & cylinder symmetricel to the direction

flow, woX = 0 at ‘the rear polint where the separation starts, the

newly computed correction glves

- [t'_]zg_;f = —2.08

equivalent to an error of about 10 percent. From this the quality of
the approximation made in the other problems, where only the first
powers were taken, can probably be also appralsed.

V. APPIICATION OF THE RESULTS OF THE SEPARATION PROBLEM

TO THE CIRCULAR CYLINDER

1. On the circular cylinder

o = 2V sin%

% ig called the reduced coordinate X; V 1s the veloclty at which
the parallel flow flows toward the right, and the cylinder moves
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toward the left, respectively. In the steady case, the separation

. q
startes according to Part II, Section 7 at Xggp, = 0.65 J;‘?-; the
1
q
Koo = 00577, /q‘i

u = q X = qlx3

maximum veloclty lies at

wheXre

Figure 11

Taking the ordinary development in powers of sine

2V 2V
90 = R g1 = EES

= = lo- = * H = °
xseP‘ 1.59 . R, Xsep. 91.1: ; Xk 1.4l . R; Xmax 81

Y

Al
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But approximating the sine in ‘the interval O - =x "by the method of
least squares, glves

=2 . 0.856 : =2, 0.0
q, R 0.856, Q.l 3 93
= 197 = o
% op, = L19T-R; T op. = 113
= le « R = o
Xox = 1°1° d Xpax = 194

In any case, the point of separation lies, by the present
calculation, at fram 11 percent to 12 percent of the total boundary—
layer length behind the maximm of the velocity. Thls statement makes,
of course, no claim to accuracy, since only the first two powers of x
are taken into consideration. Besides, test records of the pressure
difference indicate that the state near the separation is difflcult
to attain by development fram sterting point of the boundary layer,
because it is too strongly affected by the pressure distribution of
the turbulent bodies behind the cylinder. The sole purpose of the
present calculations is to indicate that separatlon is actually
obtained by the hydrodynamic equations. Further development of the
calculating methods, especlally for the more important problems of
golids of revolution, pramises, therefore, success.

2. If the cylinder with constant 'velocity is suddenly set In
motion

T = oV 8in X S8 L2 cos X
3x R

The time of separation Eb] is, according to IIT (6), given by
3 fe. R
(l ¥ 3=r> iy

R
[¢] - o0unEs
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The separation gtarts for X = x, cos X = -1 at time
R
to = O.35V—

Up to that, the cylinder has travelled a distance
S = Vi, = 0.35 « R

All this 1s independent of veloclty, denslty, and friction coefficlent
(11ttle friction assumed).

3+ At constant acceleration

U = tw(x) = 2Vt sin % -

where V 1s then the acceleration of the cylinder in the flow. The
separation time 1s (IV,7) for the start of separation

[t]egz =-2.34 or =-2.08

respectlively, or

R

2 o lelTemB
Bﬂ 1 lIV co V cos X

or = —l.O
g X
respectively. The distance covered by the cylinder 1s

S = dyt2
2

at start of separation (X = x)

S=Oo59oR or -0052|R

respectively.
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4, The resistance which the cylinder experiences at constant
acceleration is camputed next. The stress components are

Yy--pq-e%

e 8)

Owing to the smallness of the frictlon, % and g—}c cancel with

respect to %—3—, leaving as force in direction of the outside flow

; u
K=2.:Bf p cos X + k== gin X).Rdx
, { &

B is the width of the layer (height of immersed part of cylinder).

The pressure portion 1s computed as follows;

4 ﬂap
p cog XdX = B f = 8ln XdX
o ©OX

Kpressure = ZBR J;

Then
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The second term cancels out in the integration; the first gives

Koressure = 2raBRY

hence, an increase in inertia by twice the amount of displaced f£luid.
The frictlon portion is

xf F a
Kepiobion = 2B f 'bw——c-]—' + b St gin XdX
2V¥kt Ug anz ox aqz

*¢
where K = k/ p. Again, the second term disappears because S—qa-']-'
£5
and 5 are merely constants, leaving
o '

Keriction = I*J npkt o BRV

5« To give a picture of the flow conditions correspconding to
these formulas, the flow curves for a specific state of motion of the
uniformly accelerated cylinder are represented in a diagram. The
parameters R, V, k 8are arbltrary; hence, necessitate the introduction
of reduced gquantities for x, y, t, , and wu, so that R, V,
disappear. It 1s accamplished by

x=R, t = JET, y a\).l.’.B—KE.Y
v v
V= %/R3K2VW, u-.-n\/_R_V-‘U
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by which the Pormulas (campare IV (2) and V(3))

¥ = 2§53/ 2w<§l + tagﬂzg 3>

us'bw-a_g;.'.'beﬁ.aia
3 3 on

na—L

2y

w =2V gin £
R

2
+29W o oV x
=" °°§

became the followlng reduced equatioms

jFl_=l|-T3/2 sinX . (& + 21° cos X . §3)

0=l
A

The curve ¥ is then plotted against Y = 2T .  for a fixed time T
for a number of coordinate velues X, and the positlion of the
values 7V = constant read fram these curves. In figure 12, the

cylinder is shown fram X = n/2 to X = xe The separation time is
given by 2T2 cos X = -2.34, that is, the start of the separation
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by T = 1.08. In figure 12 2I° = 5, hence T = 1.58, was chosen.

For this chosen time, the separation point has already progressed up
t0 beyond 60° at the cylinder; nevertheless the boundary layer still
1g fairly thin, the relative slzes correspond to the values R = 10 cm,

. 2
k = 0,012 (water), V = 0.1-S&, that is, to a very small acceleration.
gec s60

Accordingly, t = 15.8 sec.

Figure 12

'RINET
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The pilcture obtained by ths previcus reductlon formules

for V= 10% after 1.58 secs is represented in figure 12. The
gecC
thickening of the boundary layer would be diminished in the ratio

of 1 :/10.

Translated by J. Vanier
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